Given two distributions and , we can measure how their dissimilarity in terms of their entropy with the Kullback-Leibler divergence, defined as:
\begin{align*} KL(p\|q) \approx H(q) - H(p) \\ = - \sum_\boldsymbol{x}q(\boldsymbol{x})\log q(\boldsymbol{x}) + \sum_\boldsymbol{x}p(\boldsymbol{x})\log p(\boldsymbol{x}) \end{align*}Since this difference of entropies can return a negative distance, the authors of the measure decided to substitute with in the first part, and so the final formula is:
\begin{align*} KL(p\|q) = - \sum_\boldsymbol{x}p(\boldsymbol{x})\log q(\boldsymbol{x}) + \sum_\boldsymbol{x}p(\boldsymbol{x})\log p(\boldsymbol{x}) \\ = -\sum_\boldsymbol{x}p(\boldsymbol{x})\log\frac{q(\boldsymbol{x})}{p(\boldsymbol{x})}\ge 0 \end{align*}Which makes the divergence not symmetric.